Mathematics > Combinatorics
[Submitted on 17 Aug 2014 (v1), last revised 20 Dec 2018 (this version, v2)]
Title:Treewidth of graphs with balanced separations
View PDFAbstract:We prove that if every subgraph of a graph $G$ has a balanced separation of order at most $a$ then $G$ has treewidth at most $15a$. This establishes a linear dependence between the treewidth and the separation number.
Submission history
From: Sergey Norin [view email][v1] Sun, 17 Aug 2014 22:14:36 UTC (7 KB)
[v2] Thu, 20 Dec 2018 16:39:09 UTC (8 KB)
Current browse context:
math.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.