Mathematics > Combinatorics
[Submitted on 11 Sep 2014 (v1), last revised 2 Sep 2015 (this version, v2)]
Title:Solution to a problem on hamiltonicity of graphs under Ore- and Fan-type heavy subgraph conditions
View PDFAbstract:A graph $G$ is called \emph{claw-o-heavy} if every induced claw ($K_{1,3}$) of $G$ has two end-vertices with degree sum at least $|V(G)|$ in $G$. For a given graph $R$, $G$ is called \emph{$R$-f-heavy} if for every induced subgraph $H$ of $G$ isomorphic to $R$ and every pair of vertices $u,v\in V(H)$ with $d_H(u,v)=2$, there holds $\max\{d(u),d(v)\}\geq |V(G)|/2$. In this paper, we prove that every 2-connected claw-\emph{o}-heavy and $Z_3$-\emph{f}-heavy graph is hamiltonian (with two exceptional graphs), where $Z_3$ is the graph obtained from identifying one end-vertex of $P_4$ (a path with 4 vertices) with one vertex of a triangle. This result gives a positive answer to a problem proposed in [B. Ning, S. Zhang, Ore- and Fan-type heavy subgraphs for Hamiltonicity of 2-connected graphs, Discrete Math. 313 (2013) 1715--1725], and also implies two previous theorems of Faudree et al. and Chen et al., respectively.
Submission history
From: Bo Ning [view email][v1] Thu, 11 Sep 2014 05:02:22 UTC (9 KB)
[v2] Wed, 2 Sep 2015 03:58:59 UTC (10 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.