Mathematics > Algebraic Geometry
[Submitted on 15 Sep 2014 (v1), last revised 23 Mar 2016 (this version, v4)]
Title:On 81 symplectic resolutions of a 4-dimensional quotient by a group of order 32
View PDFAbstract:We provide a construction of 81 symplectic resolutions of a 4-dimensional quotient singularity obtained by an action of a group of order 32. The existence of such resolutions is known by a result of Bellamy and Schedler. Our explicit construction is obtained via GIT quotient of the spectrum of a ring graded in the Picard group generated by the divisors associated to the conjugacy classes of symplectic reflections of the group in question. As the result we infer the geometric structure of these resolutions and their flops. Moreover, we represent the group in question as a group of automorphisms of an abelian 4-fold so that the resulting quotient has singularities with symplectic resolutions. This yields a new Kummer-type symplectic 4-fold.
Submission history
From: Maria Donten-Bury [view email][v1] Mon, 15 Sep 2014 10:49:53 UTC (38 KB)
[v2] Fri, 3 Oct 2014 17:03:41 UTC (41 KB)
[v3] Mon, 13 Jul 2015 14:37:17 UTC (42 KB)
[v4] Wed, 23 Mar 2016 13:35:44 UTC (40 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.