Mathematics > Algebraic Geometry
[Submitted on 15 Sep 2014 (v1), last revised 16 Sep 2014 (this version, v2)]
Title:Open book structures on semi-algebraic manifolds
View PDFAbstract:Given a $C^2$ semi-algebraic mapping $F: \mathbb{R}^N \rightarrow \mathbb{R}^p,$ we consider its restriction to $W\hookrightarrow \mathbb{R^{N}}$ an embedded closed semi-algebraic manifold of dimension $n-1\geq p\geq 2$ and introduce sufficient conditions for the existence of a fibration structure (generalized open book structure) induced by the projection $\frac{F}{\Vert F \Vert}:W\setminus F^{-1}(0)\to S^{p-1}$. Moreover, we show that the well known local and global Milnor fibrations, in the real and complex settings, follow as a byproduct by considering $W$ as spheres of small and big radii, respectively. Furthermore, we consider the composition mapping of $F$ with the canonical projection $\pi: \mathbb{R}^{p} \to \mathbb{R}^{p-1}$ and prove that the fibers of $\frac{F}{\Vert F \Vert}$ and $\frac{\pi\circ F}{\Vert \pi\circ F \Vert}$ are homotopy equivalent. We also show several formulae relating the Euler characteristics of the fiber of the projection $\frac{F}{\Vert F \Vert}$ and $W\cap F^{-1}(0).$ Similar formulae are proved for mappings obtained after composition of $F$ with canonical projections.
Submission history
From: Nicolas Dutertre [view email] [via CCSD proxy][v1] Mon, 15 Sep 2014 16:43:52 UTC (14 KB)
[v2] Tue, 16 Sep 2014 19:12:17 UTC (14 KB)
Current browse context:
math.AG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.