Mathematics > Statistics Theory
[Submitted on 15 Sep 2014 (v1), last revised 28 Sep 2016 (this version, v4)]
Title:Bootstrap-Based K-Sample Testing For Functional Data
View PDFAbstract:We investigate properties of a bootstrap-based methodology for testing hypotheses about equality of certain characteristics of the distributions between different populations in the context of functional data. The suggested testing methodology is simple and easy to implement. It resamples the original dataset in such a way that the null hypothesis of interest is satisfied and it can be potentially applied to a wide range of testing problems and test statistics of interest. Furthermore, it can be utilized to the case where more than two populations of functional data are considered. We illustrate the bootstrap procedure by considering the important problems of testing the equality of mean functions or the equality of covariance functions (resp. covariance operators) between two populations. Theoretical results that justify the validity of the suggested bootstrap-based procedure are established. Furthermore, simulation results demonstrate very good size and power performances in finite sample situations, including the case of testing problems and/or sample sizes where asymptotic considerations do not lead to satisfactory approximations. A real-life dataset analyzed in the literature is also examined.
Submission history
From: Theofanis Sapatinas [view email][v1] Mon, 15 Sep 2014 16:44:57 UTC (1,170 KB)
[v2] Fri, 10 Jul 2015 14:27:46 UTC (1,170 KB)
[v3] Tue, 31 May 2016 06:56:45 UTC (1,170 KB)
[v4] Wed, 28 Sep 2016 06:20:27 UTC (1,170 KB)
Current browse context:
math.ST
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.