Mathematics > Dynamical Systems
[Submitted on 19 Sep 2014 (v1), last revised 13 Jun 2018 (this version, v3)]
Title:Stochastic Perturbations of Convex Billiards
View PDFAbstract:We consider a strictly convex billiard table with $C^2$ boundary, with the dynamics subjected to random perturbations. Each time the billiard ball hits the boundary its reflection angle has a random perturbation. The perturbation distribution corresponds to the physical situation where either the scale of the surface irregularities is smaller than but comparable to the diameter of the reflected object, or the billiard ball is not perfectly rigid. We prove that for a large class of such perturbations the resulting Markov chain is uniformly ergodic, although this is not true in general.
Submission history
From: Leonardo Rolla [view email][v1] Fri, 19 Sep 2014 12:06:23 UTC (22 KB)
[v2] Wed, 11 Nov 2015 15:43:38 UTC (26 KB)
[v3] Wed, 13 Jun 2018 20:17:13 UTC (26 KB)
Current browse context:
math.DS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.