Mathematics > Analysis of PDEs
[Submitted on 24 Sep 2014]
Title:Root locii for systems defined on Hilbert spaces
View PDFAbstract:The root locus is an important tool for analysing the stability and time constants of linear finite-dimensional systems as a parameter, often the gain, is varied. However, many systems are modelled by partial differential equations or delay equations. These systems evolve on an infinite-dimensional space and their transfer functions are not rational. In this paper a rigorous definition of the root locus for infinite-dimensional systems is given and it is shown that the root locus is well-defined for a large class of infinite-dimensional systems. As for finite-dimensional systems, any limit point of a branch of the root locus is a zero. However, the asymptotic behaviour can be quite different from that for finite-dimensional systems. This point is illustrated with a number of examples. It is shown that the familiar pole-zero interlacing property for collocated systems with a Hermitian state matrix extends to infinite-dimensional systems with self-adjoint generator. This interlacing property is also shown to hold for collocated systems with a skew-adjoint generator.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.