Mathematics > Optimization and Control
[Submitted on 25 Sep 2014]
Title:Robust distributed linear programming
View PDFAbstract:This paper presents a robust, distributed algorithm to solve general linear programs. The algorithm design builds on the characterization of the solutions of the linear program as saddle points of a modified Lagrangian function. We show that the resulting continuous-time saddle-point algorithm is provably correct but, in general, not distributed because of a global parameter associated with the nonsmooth exact penalty function employed to encode the inequality constraints of the linear program. This motivates the design of a discontinuous saddle-point dynamics that, while enjoying the same convergence guarantees, is fully distributed and scalable with the dimension of the solution vector. We also characterize the robustness against disturbances and link failures of the proposed dynamics. Specifically, we show that it is integral-input-to-state stable but not input-to-state stable. The latter fact is a consequence of a more general result, that we also establish, which states that no algorithmic solution for linear programming is input-to-state stable when uncertainty in the problem data affects the dynamics as a disturbance. Our results allow us to establish the resilience of the proposed distributed dynamics to disturbances of finite variation and recurrently disconnected communication among the agents. Simulations in an optimal control application illustrate the results.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.