Mathematics > Dynamical Systems
[Submitted on 25 Sep 2014 (v1), last revised 3 Feb 2017 (this version, v2)]
Title:Random Dynamics of Transcendental Functions
View PDFAbstract:This work concerns random dynamics of hyperbolic entire and meromorphic functions of finite order and whose derivative satisfies some growth condition at infinity. This class contains most of the classical families of transcendental functions and goes much beyond. Based on uniform versions of Nevanlinna's value distribution theory we first build a thermodynamical formalism which, in particular, produces unique geometric and fiberwise invariant Gibbs states. Moreover, spectral gap property for the associated transfer operator along with exponential decay of correlations and a central limit theorem are shown. This part relies on our construction of new positive invariant cones that are adapted to the setting of unbounded phase spaces. This setting rules out the use of Hilbert's metric along with the usual contraction principle. However these cones allow us to apply a contraction argument stemming from Bowen's initial approach.
Submission history
From: Volker Mayer [view email][v1] Thu, 25 Sep 2014 08:35:58 UTC (32 KB)
[v2] Fri, 3 Feb 2017 13:46:07 UTC (35 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.