Mathematics > Spectral Theory
[Submitted on 30 Sep 2014]
Title:Hill's Spectral Curves and the Invariant Measure of the Periodic KdV Equation
View PDFAbstract:This paper analyses the periodic spectrum of Schrödinger's equation $-f''+qf=\lambda f$ when the potential is real, periodic, random and subject to the invariant measure $\nu_N^\beta$ of the periodic KdV equation. This $\nu_N^\beta$ is the modified canonical ensemble, as given by Bourgain ({Comm. Math. Phys.} {166} (1994), 1--26), and $\nu_N^\beta$ satisfies a logarithmic Sobolev inequality. Associated concentration inequalities control the fluctuations of the periodic eigenvalues $(\lambda_n)$. For $\beta, N>0$ small, there exists a set of positive $\nu_N^\beta$ measure such that $(\pm \sqrt{2(\lambda_{2n}+\lambda_{2n-1})})_{n=0}^\infty$ gives a sampling sequence for Paley--Wiener space $PW(\pi )$ and the reproducing kernels give a Riesz basis. Let $(\mu_j)_{j=1}^\infty$ be the tied spectrum; then $(2\sqrt{\mu_j}-j)$ belongs to a Hilbert cube in $\ell^2$ and is distributed according to a measure that satisfies Gaussian concentration for Lipschitz functions. The sampling sequence $(\sqrt{\mu_j})_{j=1}^\infty$ arises from a divisor on the spectral curve, which is hyperelliptic of infinite genus. The linear statistics $\sum_j g(\sqrt{\lambda_{2j}})$ with test function $g\in PW(\pi)$ satisfy Gaussian concentration inequalities.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.