Mathematical Physics
[Submitted on 2 Oct 2014]
Title:Integrable Aspects of Universal Quantum Transport in Chaotic Cavities
View PDFAbstract:The Painlevé transcendents discovered at the turn of the XX century by pure mathematical reasoning, have later made their surprising appearance -- much in the way of Wigner's "miracle of appropriateness" -- in various problems of theoretical physics. The notable examples include the two-dimensional Ising model, one-dimensional impenetrable Bose gas, corner and polynuclear growth models, one dimensional directed polymers, string theory, two dimensional quantum gravity, and spectral distributions of random matrices. In the present contribution, ideas of integrability are utilized to advocate emergence of an one-dimensional Toda Lattice and the fifth Painlevé transcendent in the paradigmatic problem of conductance fluctuations in quantum chaotic cavities coupled to the external world via ballistic point contacts. Specifically, the cumulants of the Landauer conductance of a cavity with broken time-reversal symmetry are proven to be furnished by the coefficients of a Taylor-expanded Painlevé V function. Further, the relevance of the fifth Painlevé transcendent for a closely related problem of sample-to-sample fluctuations of the noise power is discussed. Finally, it is demonstrated that inclusion of tunneling effects inherent in realistic point contacts does not destroy the integrability: in this case, conductance fluctuations are shown to be governed by a two-dimensional Toda Lattice.
Current browse context:
math-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.