Mathematics > Analysis of PDEs
[Submitted on 17 Oct 2014 (v1), last revised 24 Jun 2015 (this version, v2)]
Title:Velocity enhancement of reaction-diffusion fronts by a line of fast diffusion
View PDFAbstract:We study the velocity of travelling waves of a reaction-diffusion system coupling a standard reaction-diffusion equation in a strip with a one-dimensional diffusion equation on a line. We show that it grows like the square root of the diffusivity on the line. This generalises a result of Berestycki, Roquejoffre and Rossi in the context of Fisher-KPP propagation where the question could be reduced to algebraic computations. Thus, our work shows that this phenomenon is a robust one. The ratio between the asymptotic velocity and the square root of the diffusivity on the line is characterised as the unique admissible velocity for fronts of an hypoelliptic system, which is shown to admit a travelling wave profile.
Submission history
From: Laurent Dietrich [view email][v1] Fri, 17 Oct 2014 14:32:46 UTC (68 KB)
[v2] Wed, 24 Jun 2015 16:02:47 UTC (68 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.