Mathematics > Statistics Theory
[Submitted on 17 Oct 2014 (v1), last revised 10 Apr 2015 (this version, v2)]
Title:Higher Criticism for Large-Scale Inference, Especially for Rare and Weak Effects
View PDFAbstract:In modern high-throughput data analysis, researchers perform a large number of statistical tests, expecting to find perhaps a small fraction of significant effects against a predominantly null background. Higher Criticism (HC) was introduced to determine whether there are any nonzero effects; more recently, it was applied to feature selection, where it provides a method for selecting useful predictive features from a large body of potentially useful features, among which only a rare few will prove truly useful. In this article, we review the basics of HC in both the testing and feature selection settings. HC is a flexible idea, which adapts easily to new situations; we point out simple adaptions to clique detection and bivariate outlier detection. HC, although still early in its development, is seeing increasing interest from practitioners; we illustrate this with worked examples. HC is computationally effective, which gives it a nice leverage in the increasingly more relevant "Big Data" settings we see today. We also review the underlying theoretical "ideology" behind HC. The Rare/Weak (RW) model is a theoretical framework simultaneously controlling the size and prevalence of useful/significant items among the useless/null bulk. The RW model shows that HC has important advantages over better known procedures such as False Discovery Rate (FDR) control and Family-wise Error control (FwER), in particular, certain optimality properties. We discuss the rare/weak phase diagram, a way to visualize clearly the class of RW settings where the true signals are so rare or so weak that detection and feature selection are simply impossible, and a way to understand the known optimality properties of HC.
Submission history
From: David Donoho [view email] [via VTEX proxy][v1] Fri, 17 Oct 2014 14:43:38 UTC (1,345 KB)
[v2] Fri, 10 Apr 2015 11:43:53 UTC (807 KB)
Current browse context:
math.ST
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.