Computer Science > Information Theory
[Submitted on 19 Oct 2014]
Title:Sparse Beamforming and User-Centric Clustering for Downlink Cloud Radio Access Network
View PDFAbstract:This paper considers a downlink cloud radio access network (C-RAN) in which all the base-stations (BSs) are connected to a central computing cloud via digital backhaul links with finite capacities. Each user is associated with a user-centric cluster of BSs; the central processor shares the user's data with the BSs in the cluster, which then cooperatively serve the user through joint beamforming. Under this setup, this paper investigates the user scheduling, BS clustering and beamforming design problem from a network utility maximization perspective. Differing from previous works, this paper explicitly considers the per-BS backhaul capacity constraints. We formulate the network utility maximization problem for the downlink C-RAN under two different models depending on whether the BS clustering for each user is dynamic or static over different user scheduling time slots. In the former case, the user-centric BS cluster is dynamically optimized for each scheduled user along with the beamforming vector in each time-frequency slot, while in the latter case the user-centric BS cluster is fixed for each user and we jointly optimize the user scheduling and the beamforming vector to account for the backhaul constraints. In both cases, the nonconvex per-BS backhaul constraints are approximated using the reweighted l1-norm technique. This approximation allows us to reformulate the per-BS backhaul constraints into weighted per-BS power constraints and solve the weighted sum rate maximization problem through a generalized weighted minimum mean square error approach. This paper shows that the proposed dynamic clustering algorithm can achieve significant performance gain over existing naive clustering schemes. This paper also proposes two heuristic static clustering schemes that can already achieve a substantial portion of the gain.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.