Computer Science > Information Theory
[Submitted on 19 Oct 2014]
Title:Prior Support Knowledge-Aided Sparse Bayesian Learning with Partly Erroneous Support Information
View PDFAbstract:It has been shown both experimentally and theoretically that sparse signal recovery can be significantly improved given that part of the signal's support is known \emph{a priori}. In practice, however, such prior knowledge is usually inaccurate and contains errors. Using such knowledge may result in severe performance degradation or even recovery failure. In this paper, we study the problem of sparse signal recovery when partial but partly erroneous prior knowledge of the signal's support is available. Based on the conventional sparse Bayesian learning framework, we propose a modified two-layer Gaussian-inverse Gamma hierarchical prior model and, moreover, an improved three-layer hierarchical prior model. The modified two-layer model employs an individual parameter $b_i$ for each sparsity-controlling hyperparameter $\alpha_i$, and has the ability to place non-sparsity-encouraging priors to those coefficients that are believed in the support set. The three-layer hierarchical model is built on the modified two-layer prior model, with a prior placed on the parameters $\{b_i\}$ in the third layer. Such a model enables to automatically learn the true support from partly erroneous information through learning the values of the parameters $\{b_i\}$. Variational Bayesian algorithms are developed based on the proposed hierarchical prior models. Numerical results are provided to illustrate the performance of the proposed algorithms.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.