Mathematical Physics
[Submitted on 19 Oct 2014 (v1), last revised 16 Apr 2015 (this version, v2)]
Title:Orbifold melting crystal models and reductions of Toda hierarchy
View PDFAbstract:Orbifold generalizations of the ordinary and modified melting crystal models are introduced. They are labelled by a pair $a,b$ of positive integers, and geometrically related to $\mathbf{Z}_a\times\mathbf{Z}_b$ orbifolds of local $\mathbf{CP}^1$ geometry of the $\mathcal{O}(0)\oplus\mathcal{O}(-2)$ and $\mathcal{O}(-1)\oplus\mathcal{O}(-1)$ types. The partition functions have a fermionic expression in terms of charged free fermions. With the aid of shift symmetries in a fermionic realization of the quantum torus algebra, one can convert these partition functions to tau functions of the 2D Toda hierarchy. The powers $L^a,\bar{L}^{-b}$ of the associated Lax operators turn out to take a special factorized form that defines a reduction of the 2D Toda hierarchy. The reduced integrable hierarchy for the orbifold version of the ordinary melting crystal model is the bi-graded Toda hierarchy of bi-degree $(a,b)$. That of the orbifold version of the modified melting crystal model is the rational reduction of bi-degree $(a,b)$. This result seems to be in accord with recent work of Brini et al. on a mirror description of the genus-zero Gromov-Witten theory on a $\mathbf{Z}_a\times\mathbf{Z}_b$ orbifold of the resolved conifold.
Submission history
From: Kanehisa Takasaki [view email][v1] Sun, 19 Oct 2014 11:34:15 UTC (22 KB)
[v2] Thu, 16 Apr 2015 07:24:22 UTC (23 KB)
Current browse context:
math-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.