Computer Science > Information Theory
[Submitted on 26 Nov 2014]
Title:Algorithm and Architecture for Hybrid Decoding of Polar Codes
View PDFAbstract:Polar codes are the first provable capacity-achieving forward error correction (FEC) codes. In general polar codes can be decoded via either successive cancellation (SC) or belief propagation (BP) decoding algorithm. However, to date practical applications of polar codes have been hindered by the long decoding latency and limited error-correcting performance problems. In this paper, based on our recent proposed early stopping criteria for the BP algorithm, we propose a hybrid BP-SC decoding scheme to improve the decoding performance of polar codes with relatively short latency. Simulation results show that, for (1024, 512) polar codes the proposed approach leads to at least 0.2dB gain over the BP algorithm with the same maximum number of iterations for the entire SNR region, and also achieves 0.2dB decoding gain over the BP algorithm with the same worst-case latency in the high SNR region. Besides, compared to the SC algorithm, the proposed scheme leads to 0.2dB gain in the medium SNR region with much less average decoding latency. In addition, we also propose the low-complexity unified hardware architecture for the hybrid decoding scheme, which is able to implement SC and BP algorithms using same hardware.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.