Mathematics > Statistics Theory
[Submitted on 26 Nov 2014]
Title:Random Matrix Derived Shrinkage of Spectral Precision Matrices
View PDFAbstract:Much research has been carried out on shrinkage methods for real-valued covariance matrices. In spectral analysis of $p$-vector-valued time series there is often a need for good shrinkage methods too, most notably when the complex-valued spectral matrix is singular. The equivalent of the Ledoit-Wolf (LW) covariance matrix estimator for spectral matrices can be improved on using a Rao-Blackwell estimator, and using random matrix theory we derive its form. Such estimators can be used to better estimate inverse spectral (precision) matrices too, and a random matrix method has previously been proposed and implemented via extensive simulations. We describe the method, but carry out computations entirely analytically, and suggest a way of selecting an important parameter using a predictive risk approach. We show that both the Rao-Blackwell estimator and the random matrix estimator of the precision matrix can substantially outperform the inverse of the LW estimator in a time series setting. Our new methodology is applied to EEG-derived time series data where it is seen to work well and deliver substantial improvements for precision matrix estimation.
Submission history
From: Deborah Schneider-Luftman Ms [view email][v1] Wed, 26 Nov 2014 19:11:02 UTC (34 KB)
Current browse context:
math.ST
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.