Mathematics > Number Theory
[Submitted on 27 Nov 2014]
Title:Selberg sums - a new perspective
View PDFAbstract:Selberg sums are the analogues over finite fields of certain integrals studied by Selberg in in 1940s. The original versions of these sums were introduced by this http URL in 1981 and, following an elegant idea of this http URL in 1991 they were evaluated by Anderson, Evans and P.B.~van~Wamelen. In 2007 the author noted that these sums and certain generalizations of them appear in the study of the distribution of Gauss sums over a rational function field over a finite field. The distribution of Gauss sums is closely related to the distribution of the values of the discriminant of polynomials of a fixed degree. Here we shall take this up further. The main goal here is to establish the basic properties of Selberg sums and to formulate the problems which arise from this point of view.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.