Mathematics > Statistics Theory
[Submitted on 27 Nov 2014 (v1), last revised 20 Aug 2015 (this version, v2)]
Title:Nonparametric statistical inference for the context tree of a stationary ergodic process
View PDFAbstract:We consider the problem of estimating the context tree of a stationary ergodic process with finite alphabet without imposing additional conditions on the process. As a starting point we introduce a Hamming metric in the space of irreducible context trees and we use the properties of the weak topology in the space of ergodic stationary processes to prove that if the Hamming metric is unbounded, there exist no consistent estimators for the context tree. Even in the bounded case we show that there exist no two-sided confidence bounds. However we prove that one-sided inference is possible in this general setting and we construct a consistent estimator that is a lower bound for the context tree of the process with an explicit formula for the coverage probability. We develop an efficient algorithm to compute the lower bound and we apply the method to test a linguistic hypothesis about the context tree of codified written texts in European Portuguese.
Submission history
From: Florencia Leonardi [view email][v1] Thu, 27 Nov 2014 17:15:10 UTC (13 KB)
[v2] Thu, 20 Aug 2015 09:58:48 UTC (36 KB)
Current browse context:
math.ST
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.