Mathematics > Category Theory
[Submitted on 29 Nov 2014 (v1), last revised 11 Sep 2015 (this version, v2)]
Title:Intercategories
View PDFAbstract:We introduce a 3-dimensional categorical structure which we call intercategory. This is a kind of weak triple category with three kinds of arrows, three kinds of 2-dimensional cells and one kind of 3-dimensional cells. In one dimension, the compositions are strictly associative and unitary, whereas in the other two, these laws only hold up to coherent isomorphism. The main feature is that the interchange law between the second and third compositions does not hold, but rather there is a non invertible comparison cell which satisfies some coherence conditions. We introduce appropriate morphisms of intercategory, of which there are three types, and cells relating these. We show that these fit together to produce a strict triple category of intercategories.
Submission history
From: Robert Paré [view email][v1] Sat, 29 Nov 2014 19:37:18 UTC (35 KB)
[v2] Fri, 11 Sep 2015 19:29:35 UTC (36 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.