Mathematics > Geometric Topology
[Submitted on 1 Dec 2014 (v1), last revised 29 Apr 2015 (this version, v2)]
Title:Triangulations of 3-manifolds with essential edges
View PDFAbstract:We define essential and strongly essential triangulations of 3-manifolds, and give four constructions using different tools (Heegaard splittings, hierarchies of Haken 3-manifolds, Epstein-Penner decompositions, and cut loci of Riemannian manifolds) to obtain triangulations with these properties under various hypotheses on the topology or geometry of the manifold. We also show that a semi-angle structure is a sufficient condition for a triangulation of a 3-manifold to be essential, and a strict angle structure is a sufficient condition for a triangulation to be strongly essential. Moreover, algorithms to test whether a triangulation of a 3-manifold is essential or strongly essential are given.
Submission history
From: Henry Segerman [view email][v1] Mon, 1 Dec 2014 10:08:36 UTC (830 KB)
[v2] Wed, 29 Apr 2015 16:13:14 UTC (1,190 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.