Mathematics > Optimization and Control
[Submitted on 9 Dec 2014]
Title:Optimization Methods on Riemannian Manifolds via Extremum Seeking Algorithms
View PDFAbstract:This paper formulates the problem of Extremum Seeking for optimization of cost functions defined on Riemannian manifolds. We extend the conventional extremum seeking algorithms for optimization problems in Euclidean spaces to optimization of cost functions defined on smooth Riemannian manifolds. This problem falls within the category of online optimization methods. We introduce the notion of geodesic dithers which is a perturbation of the optimizing trajectory in the tangent bundle of the ambient state manifolds and obtain the extremum seeking closed loop as a perturbation of the averaged gradient system. The main results are obtained by applying closeness of solutions and averaging theory on Riemannian manifolds. The main results are further extended for optimization on Lie groups. Numerical examples on Riemannian manifolds (Lie groups) SO(3) and SE(3) are presented at the end of the paper.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.