Mathematics > Number Theory
[Submitted on 20 Dec 2014]
Title:On primitive elements in finite fields of low characteristic
View PDFAbstract:We discuss the problem of constructing a small subset of a finite field containing primitive elements of the field. Given a finite field, $\mathbb{F}_{q^n}$, small $q$ and large $n$, we show that the set of all low degree polynomials contains the expected number of primitive elements.
The main theorem we prove is a bound for character sums over short intervals in function fields. Our result is unconditional and slightly better than what is known (conditionally under GRH) in the integer case and might be of independent interest.
Current browse context:
math.NT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.