Computer Science > Information Theory
[Submitted on 15 Jan 2015 (v1), last revised 3 Apr 2016 (this version, v2)]
Title:On robust width property for Lasso and Dantzig selector
View PDFAbstract:Recently, Cahill and Mixon completely characterized the sensing operators in many compressed sensing instances with a robust width property. The proposed property allows uniformly stable and robust reconstruction of certain solutions from an underdetermined linear system via convex optimization. However, their theory does not cover the Lasso and Dantzig selector models, both of which are popular alternatives in the statistics community. In this letter, we show that the robust width property can be perfectly applied to these two models as well. Our results solve an open problem left by Cahill and Mixon.
Submission history
From: Hui Zhang [view email][v1] Thu, 15 Jan 2015 12:28:39 UTC (6 KB)
[v2] Sun, 3 Apr 2016 13:27:12 UTC (7 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.