Mathematics > Dynamical Systems
[Submitted on 15 Jan 2015]
Title:On a Family of Rational Perturbations of the Doubling Map
View PDFAbstract:The goal of this paper is to investigate the parameter plane of a rational family of perturbations of the doubling map given by the Blaschke products $B_a(z)=z^3\frac{z-a}{1-\bar{a}z}$. First we study the basic properties of these maps such as the connectivity of the Julia set as a function of the parameter $a$. We use techniques of quasiconformal surgery to explore the relation between certain members of the family and the degree 4 polynomials $\left(\overline{\overline{z}^2+c}\right)^2+c$. In parameter space, we classify the different hyperbolic components according to the critical orbits and we show how to parametrize those of disjoint type.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.