Mathematics > Numerical Analysis
[Submitted on 15 Jan 2015]
Title:Bell-shaped nonstationary refinable ripplets
View PDFAbstract:We study the approximation properties of the class of nonstationary refinable ripplets introduced in \cite{GP08}. These functions are solution of an infinite set of nonstationary refinable equations and are defined through sequences of scaling masks that have an explicit expression. Moreover, they are variation-diminishing and highly localized in the scale-time plane, properties that make them particularly attractive in applications. Here, we prove that they enjoy Strang-Fix conditions and convolution and differentiation rules and that they are bell-shaped. Then, we construct the corresponding minimally supported nonstationary prewavelets and give an iterative algorithm to evaluate the prewavelet masks. Finally, we give a procedure to construct the associated nonstationary biorthogonal bases and filters to be used in efficient decomposition and reconstruction algorithms. As an example, we calculate the prewavelet masks and the nonstationary biorthogonal filter pairs corresponding to the $C^2$ nonstationary scaling functions in the class and construct the corresponding prewavelets and biorthogonal bases. A simple test showing their good performances in the analysis of a spike-like signal is also presented. Keywords: total positivity, variation-dimishing, refinable ripplet, bell-shaped function, nonstationary prewavelet, nonstationary biorthogonal basis
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.