High Energy Physics - Phenomenology
[Submitted on 19 Jan 2015 (v1), last revised 21 Jul 2015 (this version, v2)]
Title:Eternal Higgs inflation and cosmological constant problem
View PDFAbstract:We investigate the Higgs potential beyond the Planck scale in the superstring theory, under the assumption that the supersymmetry is broken at the string scale. We identify the Higgs field as a massless state of the string, which is indicated by the fact that the bare Higgs mass can be zero around the string scale. We find that, in the large field region, the Higgs potential is connected to a runaway vacuum with vanishing energy, which corresponds to opening up an extra dimension. We verify that such universal behavior indeed follows from the toroidal compactification of the non-supersymmetric $SO(16)\times SO(16)$ heterotic string theory. We show that this behavior fits in the picture that the Higgs field is the source of the eternal inflation. The observed small value of the cosmological constant of our universe may be understood as the degeneracy with this runaway vacuum, which has vanishing energy, as is suggested by the multiple point criticality principle.
Submission history
From: Yuta Hamada [view email][v1] Mon, 19 Jan 2015 11:21:15 UTC (1,259 KB)
[v2] Tue, 21 Jul 2015 16:18:30 UTC (1,869 KB)
Current browse context:
hep-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.