Astrophysics > Earth and Planetary Astrophysics
[Submitted on 22 Jan 2015]
Title:Formation of a disc gap induced by a planet: Effect of the deviation from Keplerian disc rotation
View PDFAbstract:The gap formation induced by a giant planet is important in the evolution of the planet and the protoplanetary disc. We examine the gap formation by a planet with a new formulation of one-dimensional viscous discs which takes into account the deviation from Keplerian disc rotation due to the steep gradient of the surface density. This formulation enables us to naturally include the Rayleigh stable condition for the disc rotation. It is found that the derivation from Keplerian disc rotation promotes the radial angular momentum transfer and makes the gap shallower than in the Keplerian case. For deep gaps, this shallowing effect becomes significant due to the Rayleigh condition. In our model, we also take into account the propagation of the density waves excited by the planet, which widens the range of the angular momentum deposition to the disc. The effect of the wave propagation makes the gap wider and shallower than the case with instantaneous wave damping. With these shallowing effects, our one-dimensional gap model is consistent with the recent hydrodynamic simulations.
Submission history
From: Kazuhiro Kanagawa D [view email][v1] Thu, 22 Jan 2015 08:35:06 UTC (2,252 KB)
Current browse context:
astro-ph.EP
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.