Mathematics > Numerical Analysis
[Submitted on 22 Jan 2015 (v1), last revised 20 Jun 2016 (this version, v3)]
Title:Multiscale mixed finite elements
View PDFAbstract:In this work, we propose a mixed finite element method for solving elliptic multiscale problems based on a localized orthogonal decomposition (LOD) of Raviart-Thomas finite element spaces. It requires to solve local problems in small patches around the elements of a coarse grid. These computations can be perfectly parallelized and are cheap to perform. Using the results of these patch problems, we construct a low dimensional multiscale mixed finite element space with very high approximation properties. This space can be used for solving the original saddle point problem in an efficient way. We prove convergence of our approach, independent of structural assumptions or scale separation. Finally, we demonstrate the applicability of our method by presenting a variety of numerical experiments, including a comparison with an MsFEM approach.
Submission history
From: Fredrik Hellman [view email][v1] Thu, 22 Jan 2015 15:05:59 UTC (391 KB)
[v2] Fri, 24 Jul 2015 14:36:36 UTC (2,015 KB)
[v3] Mon, 20 Jun 2016 14:22:02 UTC (2,015 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.