Mathematics > Probability
[Submitted on 3 Feb 2015]
Title:Spectral Asymptotics for $V$-variable Sierpinski Gaskets
View PDFAbstract:The family of $V$-variable fractals provides a means of interpolating between two families of random fractals previously considered in the literature; scale irregular fractals ($V=1$) and random recursive fractals ($V=\infty$). We consider a class of $V$-variable affine nested fractals based on the Sierpinski gasket with a general class of measures. We calculate the spectral exponent for a general measure and find the spectral dimension for these fractals. We show that the spectral properties and on-diagonal heat kernel estimates for $V$-variable fractals are closer to those of scale irregular fractals, in that it is the fluctuations in scale that determine their behaviour but that there are also effects of the spatial variability.
Current browse context:
math.PR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.