Physics > Computational Physics
[Submitted on 31 Mar 2015]
Title:Ensemble annealing of complex physical systems
View PDFAbstract:Algorithms for simulating complex physical systems or solving difficult optimization problems often resort to an annealing process. Rather than simulating the system at the temperature of interest, an annealing algorithm starts at a temperature that is high enough to ensure ergodicity and gradually decreases it until the destination temperature is reached. This idea is used in popular algorithms such as parallel tempering and simulated annealing. A general problem with annealing methods is that they require a temperature schedule. Choosing well-balanced temperature schedules can be tedious and time-consuming. Imbalanced schedules can have a negative impact on the convergence, runtime and success of annealing algorithms. This article outlines a unifying framework, ensemble annealing, that combines ideas from simulated annealing, histogram reweighting and nested sampling with concepts in thermodynamic control. Ensemble annealing simultaneously simulates a physical system and estimates its density of states. The temperatures are lowered not according to a prefixed schedule but adaptively so as to maintain a constant relative entropy between successive ensembles. After each step on the temperature ladder an estimate of the density of states is updated and a new temperature is chosen. Ensemble annealing is highly practical and broadly applicable. This is illustrated for various systems including Ising, Potts, and protein models.
Current browse context:
physics.comp-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.