Mathematical Physics
[Submitted on 31 Mar 2015 (v1), last revised 29 Apr 2015 (this version, v2)]
Title:Bifurcation of nonlinear eigenvalues in problems with antilinear symmetry
View PDFAbstract:Many physical systems can be described by nonlinear eigenvalues and bifurcation problems with a linear part that is non-selfadjoint e.g. due to the presence of loss and gain. The balance of these effects is reflected in an antilinear symmetry, like e.g. the PT-symmetry, of the problem. Under this condition we show that the nonlinear eigenvalues bifurcating from real linear eigenvalues remain real and the corresponding nonlinear eigenfunctions remain symmetric. The abstract results are applied in a number of physical models of Bose-Einstein condensation, nonlinear optics and superconductivity, and further numerical analysis is performed.
Submission history
From: Petr Siegl [view email][v1] Tue, 31 Mar 2015 21:57:34 UTC (517 KB)
[v2] Wed, 29 Apr 2015 19:21:48 UTC (521 KB)
Current browse context:
math-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.