Condensed Matter > Quantum Gases
[Submitted on 1 Apr 2015]
Title:Split and overlapped binary solitons in optical lattices
View PDFAbstract:We analyze the energetic and dynamical properties of bright-bright (BB) soliton pairs in a binary mixture of Bose-Einstein condensates subjected to the action of a combined optical lattice, acting as an external potential for the first species, while modulating the intraspecies coupling constant of the second. In particular, we use a variational approach and direct numerical integrations to investigate the existence and stability of BB solitons in which the two species are either spatially separated (split soliton) or located at the same optical lattice site (overlapped soliton). The dependence of these solitons on the interspecies interaction parameter is explicitly investigated. For repulsive interspecies interaction we show the existence of a series of critical values at which transitions from an initially overlapped soliton to split solitons occur. For attractive interspecies interaction only single direct transitions from split to overlapped BB solitons are found. The possibility to use split solitons for indirect measurements of scattering lengths is also suggested.
Current browse context:
cond-mat.quant-gas
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.