Mathematics > Number Theory
[Submitted on 14 Apr 2015 (v1), last revised 9 Oct 2015 (this version, v2)]
Title:Squarefree polynomials and Mobius values in short intervals and arithmetic progressions
View PDFAbstract:We calculate the mean and variance of sums of the Möbius function and the indicator function of the squarefrees, in both short intervals and arithmetic progressions, in the context of the ring of polynomials over a finite field of $q$ elements, in the limit $q\to \infty$. We do this by relating the sums in question to certain matrix integrals over the unitary group, using recent equidistribution results due to N. Katz, and then by evaluating these integrals. In many cases our results mirror what is either known or conjectured for the corresponding problems involving sums over the integers, which have a long history. In some cases there are subtle and surprising differences. The ranges over which our results hold is significantly greater than those established for the corresponding problems in the number field setting.
Submission history
From: Zeev Rudnick [view email][v1] Tue, 14 Apr 2015 07:49:51 UTC (35 KB)
[v2] Fri, 9 Oct 2015 12:43:49 UTC (35 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.