Computer Science > Information Theory
[Submitted on 22 Apr 2015]
Title:Effect of Number of Users in Multi-level Coded Caching
View PDFAbstract:It has been recently established that joint design of content delivery and storage (coded caching) can significantly improve performance over conventional caching. This has also been extended to the case when content has non-uniform popularity through several models. In this paper we focus on a multi-level popularity model, where content is divided into levels based on popularity. We consider two extreme cases of user distribution across caches for the multi-level popularity model: a single user per cache (single-user setup) versus a large number of users per cache (multi-user setup). When the capacity approximation is universal (independent of number of popularity levels as well as number of users, files and caches), we demonstrate a dichotomy in the order-optimal strategies for these two extreme cases. In the multi-user case, sharing memory among the levels is order-optimal, whereas for the single-user case clustering popularity levels and allocating all the memory to them is the order-optimal scheme. In proving these results, we develop new information-theoretic lower bounds for the problem.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.