Mathematics > Logic
[Submitted on 22 Apr 2015]
Title:Finite relation algebras and omitting types in modal fragments of first order logic
View PDFAbstract:Let 2<n\leq l<m< \omega. Let L_n denote first order logic restricted to the first n variables. We show that the omitting types theorem fails dramatically for the n--variable fragments of first order logic with respect to clique guarded semantics, and for its packed n--variable fragments. Both are modal fragments of L_n. As a sample, we show that if there exists a finite relation algebra with a so--called strong l--blur, and no m--dimensional relational basis, then there exists a countable, atomic and complete L_n theory T and type \Gamma, such that \Gamma is realizable in every so--called m--square model of T, but any witness isolating \Gamma cannot use less than $l$ variables. An $m$--square model M of T gives a form of clique guarded semantics, where the parameter m, measures how locally well behaved M is. Every ordinary model is k--square for any n<k<\omega, but the converse is not true. Any model M is \omega--square, and the two notions are equivalent if M is countable.
Such relation algebras are shown to exist for certain values of l and m like for n\leq l<\omega and m=\omega, and for l=n and m\geq n+3. The case l=n and m=\omega gives that the omitting types theorem fails for L_n with respect to (usual) Tarskian semantics: There is an atomic countable L_n theory T for which the single non--principal type consisting of co--atoms cannot be omitted in any model M of T.
For n<\omega, positive results on omitting types are obained for L_n by imposing extra conditions on the theories and/or the types omitted. Positive and negative results on omitting types are obtained for infinitary variants and extensions of L_{\omega, \omega}.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.