Mathematics > Numerical Analysis
[Submitted on 22 Apr 2015]
Title:A convergent explicit finite difference scheme for a mechanical model for tumor growth
View PDFAbstract:Mechanical models for tumor growth have been used extensively in recent years for the analysis of medical observations and for the prediction of cancer evolution based on imaging analysis. This work deals with the numerical approximation of a mechanical model for tumor growth and the analysis of its dynamics. The system under investigation is given by a multi-phase flow model: The densities of the different cells are governed by a transport equation for the evolution of tumor cells, whereas the velocity field is given by a Brinkman regularization of the classical Darcy's law. An efficient finite difference scheme is proposed and shown to converge to a weak solution of the system. Our approach relies on convergence and compactness arguments in the spirit of Lions (Mathematical Topics in Fluid Dynamics, 1998).
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.