Mathematics > Optimization and Control
[Submitted on 22 Apr 2015]
Title:Some Applications of Polynomial Optimization in Operations Research and Real-Time Decision Making
View PDFAbstract:We demonstrate applications of algebraic techniques that optimize and certify polynomial inequalities to problems of interest in the operations research and transportation engineering communities. Three problems are considered: (i) wireless coverage of targeted geographical regions with guaranteed signal quality and minimum transmission power, (ii) computing real-time certificates of collision avoidance for a simple model of an unmanned vehicle (UV) navigating through a cluttered environment, and (iii) designing a nonlinear hovering controller for a quadrotor UV, which has recently been used for load transportation. On our smaller-scale applications, we apply the sum of squares (SOS) relaxation and solve the underlying problems with semidefinite programming. On the larger-scale or real-time applications, we use our recently introduced "SDSOS Optimization" techniques which result in second order cone programs. To the best of our knowledge, this is the first study of real-time applications of sum of squares techniques in optimization and control. No knowledge in dynamics and control is assumed from the reader.
Submission history
From: Anirudha Majumdar [view email][v1] Wed, 22 Apr 2015 22:47:49 UTC (2,382 KB)
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.