High Energy Physics - Experiment
[Submitted on 18 Jun 2015 (v1), last revised 12 Aug 2015 (this version, v2)]
Title:Improved measurement of the $π\rightarrow \mbox{e} ν$ branching ratio
View PDFAbstract:A new measurement of the branching ratio, $R_{e/\mu} =\Gamma (\pi^+ \rightarrow \mbox{e}^+ \nu + \pi^+ \rightarrow \mbox{e}^+ \nu \gamma)/ \Gamma (\pi^+ \rightarrow \mu^+ \nu + \pi^+ \rightarrow \mu^+ \nu \gamma)$, resulted in $R_{e/\mu}^{exp} = (1.2344 \pm 0.0023 (stat) \pm 0.0019 (syst)) \times 10^{-4}$. This is in agreement with the standard model prediction and improves the test of electron-muon universality to the level of 0.1 %.
Submission history
From: Toshio Numao [view email][v1] Thu, 18 Jun 2015 22:48:18 UTC (31 KB)
[v2] Wed, 12 Aug 2015 21:27:07 UTC (31 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.