Mathematics > Probability
[Submitted on 2 Jul 2015]
Title:On the $Φ$-variation of stochastic processes with exponential moments
View PDFAbstract:We obtain sharp sufficient conditions for exponentially integrable stochastic processes $X=\{X(t)\!\!: t\in [0,1]\}$, to have sample paths with bounded $\Phi$-variation. When $X$ is moreover Gaussian, we also provide a bound of the expectation of the associated $\Phi$-variation norm of $X$. For an Hermite process $X$ of order $m\in \N$ and of Hurst index $H\in (1/2,1)$, we show that $X$ is of bounded $\Phi$-variation where $\Phi(x)=x^{1/H}(\log(\log 1/x))^{-m/(2H)}$, and that this $\Phi$ is optimal. This shows that in terms of $\Phi$-variation, the Rosenblatt process (corresponding to $m=2$) has more rough sample paths than the fractional Brownian motion (corresponding to $m=1$).
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.