Condensed Matter > Strongly Correlated Electrons
[Submitted on 14 Jul 2015 (v1), last revised 9 Dec 2015 (this version, v2)]
Title:Quantum phase transition triggering magnetic BICs in graphene
View PDFAbstract:Graphene hosting a pair of collinear adatoms in the phantom atom configuration has pseudogap with cubic scaling on energy, $\Delta\propto|\varepsilon|^{3}$ which leads to the appearance of spin-degenerate bound states in the continuum (BICs) [Phys. Rev. B 92, 045409 (2015)]. In the case when adatoms are locally coupled to a single carbon atom the pseudogap scales linearly with energy, which prevents the formation of BICs. In this Letter, we explore the effects of non-local coupling characterized by the Fano factor of interference $q_{0},$ tunable by changing the slope of the Dirac cones in the graphene band-structure. We demonstrate that three distinct regimes can be identified: i) for $q_{0}<q_{c1}$ (critical point) a mixed pseudogap $\Delta\propto|\varepsilon|,|\varepsilon|^{2}$ appears yielding a phase with spin-degenerate BICs; ii) near $q_{0}=q_{c1}$ when $\Delta\propto|\varepsilon|^{2}$ the system undergoes a quantum phase transition in which the new phase is characterized by magnetic BICs and iii) at a second critical value $q_{0}>q_{c2}$ the cubic scaling of the pseudogap with energy $\Delta\propto|\varepsilon|^{3}$ characteristic to the phantom atom configuration is restored and the phase with non-magnetic BICs is recovered. The phase with magnetic BICs can be described in terms of an effective intrinsic exchange field of ferromagnetic nature between the adatoms mediated by graphene monolayer. We thus propose a new type of quantum phase transition resulting from the competition between the states characterized by spin-degenerate and magnetic BICs.
Submission history
From: Antonio Seridonio [view email][v1] Tue, 14 Jul 2015 00:52:46 UTC (4,064 KB)
[v2] Wed, 9 Dec 2015 02:58:45 UTC (701 KB)
Current browse context:
cond-mat.str-el
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.