Condensed Matter > Materials Science
[Submitted on 14 Jul 2015 (v1), last revised 30 Sep 2015 (this version, v2)]
Title:Using coherent X-rays to directly measure the propagation velocity of defects during thin film deposition
View PDFAbstract:The properties of artificially grown thin films are often strongly affected by the dynamic relationship between surface growth processes and subsurface structure. Coherent mixing of X-ray signals promises to provide an approach to better understand such processes. Here, we demonstrate the continuously variable mixing of surface and bulk scattering signals during real-time studies of sputter deposition of a-Si and a-WiS2 films by controlling the X-ray penetration and escape depths in coherent grazing incidence small angle X-ray scattering (Co-GISAXS). Under conditions where the X-ray signal comes from both the growth surface and the thin film bulk, oscillations in temporal correlations arise from coherent interference between scattering from stationary bulk features and from the advancing surface. We also observe evidence that elongated bulk features propagate upward at the same velocity as the surface. Additionally, a highly surface sensitive mode is demonstrated that can access the surface dynamics independently of the subsurface structure.
Submission history
From: Randall Headrick [view email][v1] Tue, 14 Jul 2015 01:47:31 UTC (1,694 KB)
[v2] Wed, 30 Sep 2015 20:23:49 UTC (1,489 KB)
Current browse context:
cond-mat.mtrl-sci
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.