Astrophysics > High Energy Astrophysical Phenomena
[Submitted on 12 Aug 2015]
Title:XMM-Newton Large Program on SN1006 - I: Methods and Initial Results of Spatially-Resolved Spectroscopy
View PDFAbstract:Based on our newly developed methods and the XMM-Newton large program of SN1006, we extract and analyze the spectra from 3596 tessellated regions of this SNR each with 0.3-8 keV counts $>10^4$. For the first time, we map out multiple physical parameters, such as the temperature ($kT$), electron density ($n_e$), ionization parameter ($n_et$), ionization age ($t_{ion}$), metal abundances, as well as the radio-to-X-ray slope ($\alpha$) and cutoff frequency ($\nu_{cutoff}$) of the synchrotron emission. We construct probability distribution functions of $kT$ and $n_et$, and model them with several Gaussians, in order to characterize the average thermal and ionization states of such an extended source. We construct equivalent width (EW) maps based on continuum interpolation with the spectral model of each regions. We then compare the EW maps of OVII, OVIII, OVII K$\delta-\zeta$, Ne, Mg, SiXIII, SiXIV, and S lines constructed with this method to those constructed with linear interpolation. We further extract spectra from larger regions to confirm the features revealed by parameter and EW maps, which are often not directly detectable on X-ray intensity images. For example, O abundance is consistent with solar across the SNR, except for a low-abundance hole in the center. This "O Hole" has enhanced OVII K$\delta-\zeta$ and Fe emissions, indicating recently reverse shocked ejecta, but also has the highest $n_et$, indicating forward shocked ISM. Therefore, a multi-temperature model is needed to decompose these components. The asymmetric metal distributions suggest there is either an asymmetric explosion of the SN or an asymmetric distribution of the ISM.
Submission history
From: Jiang-Tao Li Dr. [view email][v1] Wed, 12 Aug 2015 15:22:16 UTC (4,659 KB)
Current browse context:
astro-ph.HE
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.