Astrophysics > Astrophysics of Galaxies
[Submitted on 31 Aug 2015 (v1), last revised 21 Feb 2016 (this version, v3)]
Title:Evolution of Density Profiles in High-z Galaxies: Compaction and Quenching Inside-Out
View PDFAbstract:Using cosmological simulations, we address the interplay between structure and star formation in high-redshift galaxies via the evolution of surface density profiles. Our sample consists of 26 galaxies evolving in the redshift range $z=7-1$, spanning the stellar mass range $(0.2-6.4)\times 10^{10}M_\odot$ at $z=2$. We recover the main trends by stacking the profiles in accordance to their evolution phases. Following a wet compaction event that typically occurs when the stellar mass is $\sim10^{9.5}~M_{\odot}$ at $z\sim2-4$, the gas develops a cusp inside the effective radius, associated with a peak in star-formation rate (SFR). The SFR peak and the associated feedback, in the absence of further gas inflow to the centre, marks the onset of gas depletion from the central 1 kpc, leading to quenching of the central SFR. An extended, star-forming ring that forms by fresh gas during the central quenching process shows as a rising specific SFR (sSFR) profile, which is interpreted as inside-out quenching. Before quenching, the stellar density profile grows self-similarly, maintaining its log-log shape because the sSFR is similar at all radii. During the quenching process, the stellar density saturates to a constant value, especially in the inner 1 kpc. The stellar mass and SFR profiles deduced from observations show very similar shapes, consistent with the scenario of wet compaction leading to inside-out quenching and the subsequent saturation of a dense stellar core. We predict a cuspy gas profile during the blue nugget phase, and a gas-depleted core, sometimes surrounded by a ring, in the post-blue nugget phase.
Submission history
From: Sandro Tacchella [view email][v1] Mon, 31 Aug 2015 20:11:08 UTC (1,822 KB)
[v2] Fri, 5 Feb 2016 22:05:01 UTC (1,212 KB)
[v3] Sun, 21 Feb 2016 21:45:13 UTC (1,212 KB)
Current browse context:
astro-ph.GA
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.