General Relativity and Quantum Cosmology
[Submitted on 2 Nov 2015 (v1), last revised 10 Feb 2016 (this version, v2)]
Title:Determination of mass of an isolated neutron star using continuous gravitational waves with two frequency modes: an effect of a misalignment angle
View PDFAbstract:A rapidly spinning neutron star (NS) would emit a continuous gravitational wave (GW) detectable by the advanced LIGO, advanced Virgo, KAGRA and proposed third generation detectors such as the Einstein Telescope (ET). Such a GW does not propagate freely, but is affected by the Coulomb-type gravitational field of the NS itself. This effect appears as a phase shift in the GW depending on the NS mass. We have shown that mass of an isolated NS can, in principle, be determined if we could detect the continuous GW with two or more frequency modes. Indeed, our Monte Carlo simulations have demonstrated that mass of a NS with its ellipticity $10^{-6}$ at 1 kpc is typically measurable with precision of 20% using the ET, if the NS is precessing or has a pinned superfluid core and emits GWs with once and twice the spin frequencies. After briefly explaining our idea and results, this paper concerns with the effect of misalignment angle ("wobble angle" in the case of a precessing NS) on the mass measurement precision.
Submission history
From: Kazunari Eda [view email][v1] Mon, 2 Nov 2015 02:20:32 UTC (397 KB)
[v2] Wed, 10 Feb 2016 15:09:53 UTC (397 KB)
Current browse context:
gr-qc
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.