Astrophysics > Astrophysics of Galaxies
[Submitted on 11 Jan 2016]
Title:Towards a comprehensive picture of powerful quasars, their host galaxies and quasar winds at z ~ 0.5
View PDFAbstract:Luminous type-2 quasars in which the glow from the central black hole is obscured by dust are ideal targets for studying their host galaxies and the quasars' effect on galaxy evolution. Such feedback appears ubiquitous in luminous obscured quasars where high velocity ionized nebulae have been found. We present rest-frame yellow-band (~5000 Angstroms) observations using the Hubble Space Telescope for a sample of 20 luminous quasar host galaxies at 0.2 < z < 0.6 selected from the Sloan Digital Sky Survey. For the first time, we combine host galaxy observations with geometric measurements of quasar illumination using blue-band HST observations and [OIII] integral field unit observations probing the quasar winds. The HST images reveal bright merger signatures in about half the galaxies; a significantly higher fraction than in comparison inactive ellipticals. We show that the host galaxies are primarily bulge-dominated, with masses close to M*, but belong to < 30% of elliptical galaxies that are highly star-forming at z ~ 0.5. Ionized gas signatures are uncorrelated with faint stellar disks (if present), confirming that the ionized gas is not concentrated in a disk. Scattering cones and [OIII] ionized gas velocity field are aligned with the forward scattering cones being co-spatial with the blue-shifted side of the velocity field, suggesting the high velocity gas is indeed photo-ionized by the quasar. Based on the host galaxies' high star-formation rates and bright merger signatures, we suggest that this low-redshift outbreak of luminous quasar activity is triggered by recent minor mergers. Combining these novel observations, we present new quasar unification tests, which are in agreement with expectations of the orientation-based unification model for quasars.
Submission history
From: Dominika Wylezalek [view email][v1] Mon, 11 Jan 2016 21:00:03 UTC (3,301 KB)
Current browse context:
astro-ph.GA
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.