Astrophysics > Cosmology and Nongalactic Astrophysics
[Submitted on 11 Jan 2016 (v1), last revised 10 May 2016 (this version, v2)]
Title:The Mass-Concentration-Redshift Relation of Cold and Warm Dark Matter Halos
View PDFAbstract:We use a suite of cosmological simulations to study the mass-concentration-redshift relation, $c({\rm M},z)$, of dark matter halos. Our simulations include standard $\Lambda$-cold dark matter (CDM) models, and additional runs with truncated power spectra, consistent with a thermal warm dark matter (WDM) scenario. We find that the mass profiles of CDM and WDM halos are self-similar and well approximated by the Einasto profile. The $c({\rm M},z)$ relation of CDM halos is monotonic: concentrations decrease with increasing virial mass at fixed redshift, and decrease with increasing redshift at fixed mass. The mass accretion histories (MAHs) of CDM halos are also scale-free, and can be used to infer concentrations directly. These results do not apply to WDM halos: their MAHs are not scale-free because of the characteristic scale imposed by the power-spectrum suppression. Further, the WDM $c({\rm M},z)$ relation is non-monotonic: concentrations peak at a mass scale dictated by the truncation scale, and decrease at higher and lower masses. We show that the assembly history of a halo can still be used to infer its concentration, provided that the total mass of its progenitors is considered (the "collapsed mass history"; CMH), rather than just that of its main ancestor. This exploits the scale-free nature of CMHs to derive a simple scaling that reproduces the mass-concentration-redshift relation of both CDM and WDM halos over a vast range of halo masses and redshifts. Our model therefore provides a robust account of the mass, redshift, cosmology and power spectrum dependence of dark matter halo concentrations.
Submission history
From: Aaron Ludlow Ph.D. [view email][v1] Mon, 11 Jan 2016 21:00:05 UTC (3,151 KB)
[v2] Tue, 10 May 2016 10:36:42 UTC (3,785 KB)
Current browse context:
astro-ph.CO
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.