Physics > Physics Education
[Submitted on 18 Feb 2016]
Title:Assessing and improving student understanding of quantum mechanics
View PDFAbstract:We developed a survey to probe student understanding of quantum mechanics concepts at the beginning of graduate instruction. The survey was administered to 202 graduate students in physics enrolled in first-year quantum mechanics courses from seven different universities at the beginning of the first semester. We also conducted one-on-one interviews with fifteen graduate students or advanced undergraduate students who had just finished a course in which all the content on the survey was covered. We find that students share universal difficulties about fundamental quantum mechanics concepts. The difficulties are often due to over-generalization of concepts learned in one context to other contexts where they are not directly applicable and difficulty in making sense of the abstract quantitative formalism of quantum mechanics. Instructional strategies that focus on improving student understanding of these concepts should take into account these difficulties. The results from this study can sensitize instructors of first-year graduate quantum physics to the conceptual difficulties students are likely to face.
Current browse context:
physics.ed-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.