Condensed Matter > Mesoscale and Nanoscale Physics
[Submitted on 5 Mar 2016]
Title:Electron correlations and silicon nanocluster energetics
View PDFAbstract:The first-principle prediction of nanocluster stable structure is often hampered by the existence of many isomer configurations with energies close to the ground state. This fact attaches additional importance to many-electron effects going beyond density functional theory (DFT), because their contributions may change a subtle energy order of competitive structures. To analyze this problem, we consider, as an example, the energetics of silicon nanoclusters passivated by hydrogen Si$_{10}$H$_{2n}$ with $0\le n\le 11$, the structure of which varies with passivation from compact to loose-packed, similar to branching polymers. Our calculations performed by the DFT, hybrid functionals and Hartree-Fock (H-F) methods, as well as by the GW approximation (GWA), confirm a considerable sensitivity of structure prediction and isomer energy ordering to many-electron effects and show some results which may be obtained with the methods less computationally demanding than the GWA.
Current browse context:
cond-mat.mes-hall
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.